Sisällys
Ne jotka pokeripelin säännöt tuntematon, jo todella tietoinen siitä, että pokerimerkkien arvot muuttuvat nopeasti turnauksissa. Ensimmäisen voiton jälkeen he eivät enää täytä alkuperäisiä arvoja. Miksi näin tapahtuu? Tässä artikkelissa yritämme laskea pokerimerkkien erityisarvot turnauksen tietyssä vaiheessa tai tilanteessa.
Pokeriturnaus ja sen rakenne
Tässä artikkelissa tarkastelemme nimenomaan tätä pokeriturnausta. Pokeripelit vaatii heidän ehtojensa ymmärtämistä, joten toimitamme ensin tärkeimmät tiedot, joita tarvitset pokerimerkkiarvojesi laskemiseksi:
- 10 osallistujaa;
- osto - 10 euroa;
- aloitusmerkkien määrä - 1000;
- palkintorakenne: 50% / 30% / 20%;
- 1. sija - 50 euroa;
- 2. sija - 30 euroa;
- 3. sija - 20 euroa.
Pokeripelimerkkien arvo turnauksen alussa ja lopussa
Pokeriturnaukset edellyttävät kaikkien pelaajien ostavan saman määrän pelimerkkejä joka kerta. Erityisesti ihmiset maksavat tietyn määrän ja saavat siitä tarkoitetun määrän pelimerkkejä. Tässä tapauksessa heti turnauksen alussa jokaisen pelimerkin arvo on 10 euroa / 1000 pelimerkkiä = 0,01 euroa.
Jos meidän pokeriyhdistelmät voimakkuuden perusteella olisi usein paras ja saisimme ensimmäisen sijan, keräämme yhteensä 10 pelimerkkiä ja voittaisimme 000 euroa. Joten yhden pelimerkin arvo turnauksen lopussa olisi: 50 € / 50 10 € = 000 €. Tämä tarkoittaa, että sirun arvo on kaksinkertaistunut turnauksen lopussa.
Usean pelaajan jättämien pokerimerkkien arvo
Annamme esimerkin siitä, miten tilanne muuttuu, kun jäljellä on vain 4 pelaajaa: A, B, C ja D. Heillä on vastaavasti 4000, 3000, 2000 ja 1000 pelimerkkiä. Tarkastellaan, mikä arvo jokaisella henkilöllä on siinä tapauksessa?
Laskemme jokaisen pokerin pelaajan kertoimet.
Tätä ei ole vaikea tehdä. Sinun tarvitsee vain laskea, mikä osa siruista on kaikilla. Ilmaisemme sen prosentteina. Siten pelaajilla A, B, C, D on 40%, 30%, 20%, 10% kaikista pelimerkkeistä. Tästä syystä mahdollisuudet päästä ensimmäiselle sijalle ovat seuraavat:
- Pelaaja A - 40%;
- Pelaaja B - 30%;
- Pelaaja C - 20%;
- Pelaaja D - 10%.
Ensimmäisen sijan kertoimet kaikille pokerin pelaajille:
Pelaajat | Pelimerkkien määrä | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka |
A | 4000 | 40% | ? | ? | ? |
B | 3000 | 30% | ? | ? | ? |
C | 2000 | 20% | ? | ? | ? |
D | 1000 | 10% | ? | ? | ? |
Saamme selville, mitä kertoimia jokaiselle pokerinpelaajalle tulee toiselle sijalle.
Pelaajalla on kolme tapaa saada toinen paikka:
- BA - pelaaja B voittaa ensimmäisen sijan, pelaaja A voittaa toisen sijan;
- CA - Pelaaja C voittaa ensimmäisen, pelaaja A voittaa toisen;
- Pelaaja DA - D voittaa ensimmäisen sijan, pelaaja A voittaa toisen sijan.
Laskemme kaikkien mainittujen varianttien todennäköisyydet. Sitten laskemme ne yhteen ja saamme vastauksen, mikä on todennäköisyys, että pelaaja A saa toisen sijan.
- BA-vaihtoehto. Näin tapahtuu, jos pelaaja B voittaa ensimmäisen sijan. Tämän tapahtuman todennäköisyys on 30%. Tässä tapauksessa pelaaja A voittaa muita pelaajia vastaan: 4000 / (4000 + 2000 + 1000) = 4000/7000. Siten BA = 0.3 * (4000/7000) ~ 17.14%. Laskemme muut vaihtoehdot samalla tavalla.
- CA = 0.2 * (4000 / (4000 + 3000 + 1000)) = 0.2 * (4000/8000) ~ 10%
- DA = 0.1 * (4000 / (4000 + 3000 + 2000)) = 0.1 * (4000/9000) ~ 4.4%
Siten todennäköisyys, että A voittaa toisen sijan, on: A = 17.4% + 10% + 4.4% = 31.8%. Vastaus:. 31.8%.
Pelaajalla B on kolme tapaa saada toinen paikka:
- AB - pelaaja A voittaa ensimmäisen sijan, pelaaja B voittaa toisen;
- AC - pelaaja C voittaa ensimmäisen sijan, pelaaja B voittaa toisen;
- Pelaaja AD voittaa ensimmäisen sijan, pelaaja B voittaa toisen.
- AB = 0.4 * (3000 / (3000 + 2000 + 1000)) = 0.4 * (3000/6000) = 20%
- CB = 0.2 * (3000 / (4000 + 3000 + 1000)) = 0.2 * (3000/8000) = 7.5%
- DB = 0.1 * (3000 / (4000 + 3000 + 2000)) = 0.1 * (3000/9000) ~ 3.3%
Siten pelaajan B todennäköisyys voittaa toinen paikka on: B = 20% + 7.5% + 3.3% = 30.8%. Vastaus:. 30.8%.
Pelaajalla C on kolme tapaa saada toinen paikka:
- AC - pelaaja A voittaa ensimmäisen sijan, pelaaja C voittaa toisen;
- BC - pelaaja B voittaa ensimmäisen sijan, pelaaja C voittaa toisen;
- Pelaaja DC - D voittaa ensimmäisen, pelaaja C voittaa toisen sijan.
- AC = 0.4 * (2000 / (3000 + 2000 + 1000)) = 0.4 * (2000/6000) ~ 13.33%
- BC = 0.3 * (2000 / (4000 + 2000 + 1000)) = 0.3 * (2000/7000) ~ 8.57%
- DC = 0.1 * (2000 / (4000 + 3000 + 2000)) = 0.1 * (2000/9000) ~ 2.2%
Siten todennäköisyys, että pelaaja C voittaa toisen sijan, on: B = 13.33% + 8.57% + 2.2% = 31.8%. Vastaus:. 24.1%
Mikä on helpoin tapa päästä pelaajalle D toiselle sijalle. Me yksinkertaisesti vähennämme 100%: sta todennäköisyyden, että muut pelaajat pääsevät toiselle sijalle: 100% - 31.8% -30.8% - 24.1% = 13.3%. Vastaus:. 13.3%
Kaikkien toiselle sijalle pääsevien pokeripelaajien mahdollisuudet:
Pelaajat | Pelimerkkien määrä | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka |
A | 4000 | 40% | 31.8% | ? | ? |
B | 3000 | 30% | 30.8% | ? | ? |
C | 2000 | 20% | 24.1% | ? | ? |
D | 1000 | 10% | 13.3% | ? | ? |
3. Laske kaikkien pokeripelaajien kertoimet, jotka voittavat kolmannen sijan.
Pelaajalla A on kuusi tapaa päästä kolmannelle sijalle:
- BCA; 2. CBA; 3. BDA; 4. DBA; 5. CDA; 6. DCA.
Laskemme kaikkien varianttien todennäköisyydet ja selvitämme pelaajan A todennäköisyyden päästä kolmannelle sijalle.
- BCA. BC-variantin esiintymisen todennäköisyys on 8.57%. Siten pelaaja A voittaa kolmannen sijan todennäköisyydellä 0.0857 * (4000 / (4000 + 1000)) = 0.0857 * (4000/5000) ~ 6.87%. Laskemme muut vaihtoehdot samalla tavalla.
- CBA=0.075*(4000/(4000+1000))=6%
- BD=0.3*(1000/(4000+2000+1000))~4.29%
- BDA=0.0429*(4000/(4000+2000))~2.86%
- DBA=0.033*(4000/4000+2000))=2.2%
- CD=0.2*(1000/(4000+3000+1000))=2.5%
- CDA=0.025*(4000/(4000+3000))~1.43%
- DCA=0.022*(4000/(4000+3000))~1.26%
Joten pokerinpelaaja A: n todennäköisyys päästä kolmannelle sijalle on: A = 6.87% + 6% + 2.86% + 2.2% + 1.43% + 1.26% = 20.62%
Pelaajalla B on kuusi tapaa päästä kolmannelle sijalle:
- ACB; 2. ohjaamo; 3. ADB; 4. DAB; 5. CDB; 6. DCB.
Laskemme kaikkien varianttien todennäköisyydet ja selvitämme, kuinka suuri todennäköisyys pelaajan B on päästävä kolmannelle sijalle.
- ACB=0.1333*(3000/(3000+1000))~10%
- CAB=0.1*(3000/(3000+1000))=7.5%
- AD=0.4*(1000/(3000+2000+1000))~6.67
- ADB=0.0667*(3000/(3000+2000))~4%
- DAB=0.044*(3000 /(3000+2000))=2.64%
- CD=0.2*(1000/(4000+3000+1000))=2.5%
- CDB=0.025*(3000/(3000+4000))~1.07%
- DCB=0.022*(3000/(3000+4000))~0.94%
Tämä on pokerinpelaajan B todennäköisyys päästä kolmannelle sijalle: B = 10% + 7.5% + 4% + 2.64% + 1.07% + 0.94% = 26.15%
Pelaaja C voi päästä kolmannelle sijalle kuudella tavalla:
- BAC; 2. ABC; 3. BDC; 4. DBC; 5. ADC; 6. DAC.
Laskemme kaikkien varianttien todennäköisyydet ja selvitämme C-pelaajan todennäköisyyden päästä kolmannelle sijalle.
- BAC=0.1714*(2000/(2000+1000))~11.43%
- ABC=0.2*(2000/(2000+1000))~13.13%
- BD=0.3*(1000/(4000+2000+1000))~4.29%
- BDC=0.0429*(2000/(4000+2000))=1.43%
- DBC=0.033*(2000/(4000+2000))=1.1%
- AD=0.4*(1000(/3000+2000+1000))=6.67%
- ADC=0.067*(2000/(2000+1000))~4.47%
- DAC=0.044*(2000/(3000+2000))=1.76%
Tämä on yleinen todennäköisyys, että C-pokerin pelaaja pääsee kolmannelle sijalle: C = 11.43% + 13.13% + 1.43% + 1.1% + 4.47% + 1.76% = 33.32%
Todennäköisyys, että pelaaja D pääsee kolmannelle sijalle, lasketaan normaalisti. 100%: sta vähennämme muiden pelaajien mahdollisuudet päästä kolmannelle sijalle: 100% - 20.62% -26.15% -33.32% = 19.91%. Vastaus:. 19.91%
Kertoimet kaikkien pokerinpelaajien pääsystä kolmannelle sijalle ovat:
Pelaajat | Pelimerkkien määrä | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka |
A | 4000 | 40% | 31.8% | 20.62% | ? |
B | 3000 | 30% | 30.8% | 26.15% | ? |
C | 2000 | 20% | 24.1% | 33.32% | ? |
D | 1000 | 10% | 13.3% | 19.91% | ? |
Laskemme kaikkien pokeripelaajien voittokertoimet, jotka voittavat neljännen sijan.
100 prosentista vähennämme pelaajan mahdollisuudet päästä muihin paikkoihin ja saamme mahdollisuuden päästä neljänneksi.
- Pokerinpelaajan neljännen sijan todennäköisyys: 100% -40% -31.8% -20.62% = 7.58%
- Pokeripelaaja B: n neljännen sijan todennäköisyys: 100% -30% -30.8% -26.15% = 13.05%
- C-pokerin pelaajan neljännen sijan todennäköisyys: 100% -30% -24.1% -33.32% = 12.58%
- D-pokerin pelaajan neljännen sijan todennäköisyys: 100% -10% -13.3% -19.91% = 56.79%
Kaikkien pokeripelaajien mahdollisuudet päästä tiettyihin paikkoihin:
Pelaajat | Pelimerkkien määrä | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka | Todennäköisyys voittaa yksi paikka |
A | 4000 | 40% | 31.8% | 20.62% | 7.58% |
B | 3000 | 30% | 30.8% | 26.15% | 13.05% |
C | 2000 | 20% | 24.1% | 33.32% | 12.58% |
D | 1000 | 10% | 13.3% | 19.91% | 56.79% |
5. Laske pelaajien käytettävissä olevien pelimerkkien arvo.
Pelaajan pokerimerkin arvo:
- Pokeripelaaja = 0.4 * 50 euroa + 0,318 * 30 euroa + 0,2062 * 20 euroa ~ 33.66 euroa
- Pokeripelaaja B = 0.3 * 50 euroa + 0.308 * 30 euroa + 0.2615 * 20 euroa = 29.47 euroa
- C-pokeripelaaja = 0.2 * 50 euroa + 0.241 * 30 euroa + 0.3332 * 20 euroa ~ 23.89 euroa
- D-pokeripelaaja = 0.1 * 50 euroa + 0.133 * 30 euroa + 0.1991 * 20 euroa ~ 12.97 euroa
Saimme pöydän:
Pelaajat | Pelimerkkien määrä | Palkintopaikat | Tunnuksen arvo | Yhden tunnuksen arvo |
A | 4000 | 1. sija: 50 euroa | 33.66 euroa | 0.008415 euroa |
B | 3000 | 2. sija: 30 euroa | 29.47 euroa | ~ 0.009823 euroa |
C | 2000 | 3. sija: 20 euroa | 23.89 euroa | 0.011945 euroa |
D | 1000 | 4. sija: 0 euroa | 12.97 euroa | 0.01297 euroa |
Kuten taulukosta voidaan nähdä, pokerimerkkien arvot muuttuvat koko turnauksen ajan. Mitä enemmän pelimerkkejä sinulla on, sitä pienempi on yhden pelimerkin arvo. Päinvastoin, mitä vähemmän pokerimerkkejä sinulla on, sitä suurempi on yhden pelimerkin arvo.
Muista pokeriturnaus alussa pokerimerkkien arvot ovat samat kaikille pelaajille. Pokerimerkin alin arvo on turnauksen lopussa, kun kaikki pelimerkit ovat yhden henkilön käsissä. Pokeripelimerkkien arvo osoittaa jotain, joka on sen arvoista ja kuinka paljon kannattaa kokeilla pelissä. Olkoon niin kuin se onkin, vaivaa kannattaa!
Usein Kysytyt Kysymykset
❓ Muuttuuko pokerimerkkien arvot turnausten aikana?
✓ Kyllä. Pokeriturnaukset ovat eräänlainen peli, jossa mitä enemmän pelimerkkejä pelaajalla on, sitä pienempi niiden arvo. Sitä vastoin pokerimerkit ovat arvokkaampia, kun pelaajilla on hyvin vähän.
❓ Milloin pokerimerkkien enimmäisarvo on turnauksissa?
Yhden pokerimerkin arvo on suurin, kun pelaajalla on vähiten.
❓ Milloin pokerimerkkien alin arvo turnauksissa?
Mitä enemmän tunnuksia henkilöllä on, sitä enemmän yhden tunnuksen arvo pienenee.
❓ Kuinka lasketaan yhden tunnuksen arvo?
Oletetaan, että meillä on 100 pelimerkkiä. Maksoimme niistä 10 euroa. Joten jaamme maksetun määrän ostettujen pelimerkkien määrällä. 10/100 = 0,1 euroa.
❓ Voinko ostaa niin monta pelimerkkiä kuin haluan turnausten aikana?
❌ Ei. Kaikkien turnauksessa olevien pelaajien on ostettava sama määrä pelimerkkejä.
Hyvä tieto. En uskonut pelimerkkien arvon muuttuvan